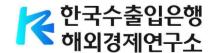


해외경제연구소 산업투자조사실


리튬 이차전지 산업 동향

I. 서론 ·························4
II. 리튬 이차전지 기술동향 ·······5
Ⅲ. 세계 리튬 이차전지 시장동향13
Ⅳ. 주요 기업 동향 및 국내 리튬 이차전지 산업동향 ·· 16
V. 시사점 및 결론 ··································

작성 : 선임연구원 강정화 (3779-5327)

nicekang@koreaexim.go.kr

확인 : 실장 박동완

< 요 약 >

- □ 리튬 이차전지는 양극재, 음극재, 전해질, 분리막 등의 주요 4가지 물질로 구성되어 있음
 - 리튬 이차전지는 양극재, 음극재, 전해질, 분리막을 조립하여 만들어지며, 양극재, 음극재, 전해질, 분리막 등의 4대 소재가 전체 생산원가의 50%를 차지
 - 소재 부분의 원가 구성을 살펴보면 중 양극재가 44%를 차지하여 가장 높은 비중을 차지하며, 분리막 14%, 음극재 10%, 전해질 7% 순으로 차지
- □ 2014년 세계 리튬 이차전지 시장은 전년대비 15% 이상 증가한 23조원에 달할 전망
 - 2013년 세계 리튬 이차전지 시장규모는 20조원으로 추정되며, 2014년 시장 규모는 전년대비 15% 가량 성장할 전망
 - 2014년 핸드폰 및 노트북용 소형 IT기기용 리튬 이차전지 수요는 14.7조원으로 전체 수요의 64%를 차지
- □ 세계 리튬 이차전지 시장은 전기차 및 에너지저장용 중대형 이차전지시장이 성장을 견인할 전망
 - 23조원 규모의 리튬 이차전지 시장 규모가 2020년 64조원으로 성장할 전 망이며, 수요 증가의 가장 큰 동인은 중대형 이차전지의 수요 증가때문
 - 친환경 자동차로 주목받고 있는 전기차의 리튬 이차전지 시장은 2014년 5.7조위에서 2020년 15.8조위으로 연평균 20%씩 성장할 전망
 - 에너지저장용 리튬 이차전지 시장은 2013년 1.4조원에서 2015년 5.3조 원 2020년 29.7조원 규모로 급성장할 전망
- □ 2013년 기준 삼성SDI가 시장점유율 28%로 1위를 차지하고 있으며, LG화학이 18%로 2위를 기록 중
 - 국내 전지 제조기술은 경쟁력을 확보하고 있으나, 소재 및 핵심기술 은 선진국 대비 30~40% 수준
 - 리튬 이차전지 제조 분야에서 경쟁력을 지속적으로 유지하기 위해선 핵심소재의 국산화가 절대적으로 필요

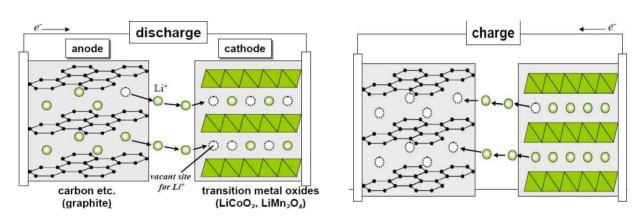
I. 서론

- □ 리튬 이차전지 산업은 전기차 및 에너지저장 시스템용 등의 중대형 이차전지 수요 증가로 새로운 성장기에 접어들고 있음
 - 리튬 이차전지는 주로 휴대폰 등 모바일 IT 기기의 전원으로 사용되고 있지만, 대용량화 기술이 발전함에 따라 자동차 및 에너지 저장 등의 용도로 사용이 확대되고 있는 중
 - 테슬라로 대변되는 전기차 시장이 형성됨에 따라 전기차용 리튬 이차전 지 수요가 빠르게 증가하고 있음
 - 전기차 1대에 들어가는 리튬 이차전지 용량은 노트북 1,000대, 스마트폰 5,000대에 해당하는 수준
 - 올해 북미 지역 전기차 수요만 10만 대에 달해 전기차용 이차전지 수요가 본격적으로 형성될 전망
 - 리튬 이차전지는 스마트그리드1)로 대변되는 21세기 에너지 혁명의 핵심 역할인 에너지 저장장치로써 중추적인 역할을 할 전망
 - 21세기 전력망을 구현을 위해선 전력의 생산과 소비의 불일치 문제를 해결할 수 있는 완충적 역할을 할 수 있는 에너지 저장 기술이 필수적이며, 리튬 이차전지가 최선의 대안으로 떠오르고 있음
 - 본고에서는 날로 중요성이 커지고 있는 리튬 이차전지 산업의 기술 및 시장 동향을 알아보고 향 후 리튬 이차전지 산업의 발전 가능성 및 시장전망에 대해서 살펴보고자 함

표 1 리튬 이차전지의 3대 용도

용도	주요 특징
TT-3] II	현재 리튬 이차전지 대표적인 사용처
IT제품	- 장시간 연속사용과 소형, 경량화가 중요
	하이브리드 자동차, 전기자동차 등 친환경 자동차에 탑재
자동차	- 고출력(노트북용 전지의 50배 이상), 내구성(15년 이상 수명), 안정
	성(폭발위험 해소)이 필수요건
에너지 저장	풍력, 태양광 발전 등으로 생산한 잉여전력을 저장
	- 고정형이기 때문에 자동차용처럼 엄격한 요구조건이 불필요

자료: 지식경제부/한국전지연구조합, 삼성SDI 홈페이지, 삼성경제연구소 재인용


¹⁾ 스마트그리드(Smart Grid) : 기존의 전력망에 IT 기술을 융합하여 전력 공급자와 소비자간의 양방향 실시간 정보를 교환함으로써 에너지 효율을 최적화하는 차세대 전력망

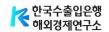
II. 리튬 이차전지 기술동향

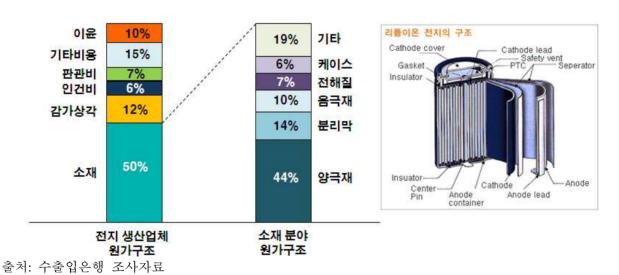
1. 리튬 이차전지 작동원리 및 구조

- □ 이온상태로 존재하는 리튬이온(Li+)이 방전시에는 양극(Cathode)에서 음극(anode)으로, 충전 시에는 anode(음극)에서 cathode(양극)로 이동하면서 전기를 생성
 - 방전시 양극에서 리튬이온을 활성화시켜 음극으로 전달해 주고 방전 시에는 음극의 리튬이 활성화되어 양극으로 이동함
 - 양극재료의 리튬이온 활성화 능력 및 음극재료에서 리튬이온을 삽입(intercalation)할 수 있는 충분한 공간의 존재가 전지의 성능을 좌우 함

그림 1. 리튬이온전지 작동원리

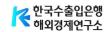
○ 전해질의 종류에 따라 '일반 리튬이온전지(LiB, 액상형 전해질)'와 '리튬폴리머전지²)(LiPB, Gel 또는 고체 고분자 형태의 전해질)'로 구분되며, 전지의 형상에 따라 원통형과 각형으로 구분


그림 2. 원형 리튬이온전지 각형 리튬이온전지 리튬 폴리머전지

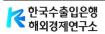


²⁾ 리튬이온전지와 같이 알루미늄 캔과 같은 외장틀로 밀봉할 필요 없이 간단한 Packaging 형태로 포장할 수 있으며, 전해액 대신 고분자 물질로 채워 발화 및 폭발 위험이 기존 리튬 이온전지 대비 현저히 감소

- □ 리튬 이차전지는 양극재, 음극재, 전해질, 분리막 등 주요 4개 소재로 구성되어 있음
 - 리튬 이차전지는 충전시 리튬이온을 제공하는 양극(Cathode), 리튬이온 을 저장하는 음극(anode), 양극과 음극에서 발생한 전자가 외부회로를 통해 일을 할 수 있도록 내부단락을 방지하는 분리막, 리튬이온이 이동 할 수 있는 공간과 환경을 제공하는 전해액으로 구성됨
 - 리튬 이차전지는 양극재, 음극재, 전해질, 분리막을 조립하여 만들어지며, 양극재, 음극재, 전해질, 분리막 4대 소재가 전체 생산원가의 50%를 차지
 - 생산원가 중 소재 부분이 50%를 차지하며, 소재부분의 원가 구성을 살펴보면 양극재가 44%, 분리막 14%, 음극재 10%, 전해질 7% 순으로 차지


그림 3. 원형 리튬이온전지 구조 및 원가구성도

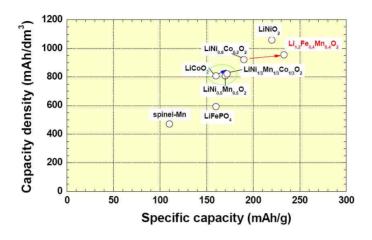
2. 리튬 이차전지 주요 소재 기술개발 동향


가. 양극재

- □ 양극재는 리튬 이차전지 소재 가격 중 약 44%를 하는 핵심소재로 리튬코발트산화물, 리튬망간산화물, 리튬인산철산화물이 많이 사용
 - 한국 및 일본 기업들은 활성이 높은 리튬코발트산화물(LCO), 니켈코발 트망간(NCM) 계열을 개발하고 있으며, 미국 및 중국 기업들은 리튬인 산철산화물(LFO) 개발에 집중하고 있음
 - 리튬코발트산화물(LCO)은 에너지 출력 및 높은 수명으로 상업화 초기

- 에 가장 널리 사용되어 왔으나, 희귀금속인 코발트 높은 가격과 안정성 문제로 코발트 성분의 일부를 망간 및 알루미늄으로 대체되는 추세
- IT용 소형전지에서 전기차 및 에너지저장 장치 등 중대형 리튬 이차전지 수요가 커짐에 따라 소재의 가격 경쟁력이 중요한 요소로 떠오르고 있음
- 리튬코발망간산화물(LCM)은 리튬코발트산화물 대비 코발트 사용량을 1/3에서 1/7까지 줄여 저렴한 가격으로 양극재 생산이 가능
- 리튬인산철산화물(LFP) 코발트 대신 철을 사용하기 때문에 가장 저렴하고 안정성이 높으나 순도 및 전기전도도 등 성능 측면에서 개선이 필요
- □ 더 작고 오래가는 리튬이온전지 생산하기 위해선 200mAh/g이상의 용량을 지닌 양극재 개발이 필요
 - 리튬이온전지에 쓰이는 양극재 용량은 150mAh/g 수준
 - IT기기의 발달 및 전기 자동차의 필요성 증대로 고용량의 배터리 수요가 급증하고 있는 상황
 - 하지만 현재 사용되고 있는 Li 화합물들의 용량은 LiCoO₂ 120~145 mAh/g, LiNiO₂ 135~180 mAh/g, LiMn₂O₄ 100~130 mAh/g의 수준이어서 장시간 사용에는 제한이 있음
 - Nano-technology 활용 및 여러 금속 조합을 통한 성능 개선 연구들이 전 세계적으로 활발히 연구 중
- □ 폭발/화재등과 같은 리튬이온 전지의 안전성 문제는 과충/방전시 LiCoO₂ 구조가 불안정해지는 요인에 상당 부분 기인
 - 리튬이온 전지의 빈번한 화재/폭발 사고는 전기 자동차의 적용에 가장큰 이슈 사항
 - LiCoO₂는 용량 및 출력이 좋으나, 충/방전시 물질 구조가 불안정해지는 단점이 있어 이를 대체하기 위한 새로운 양극물질 개발이 활발히 진행 중
 - 주요 전지 생산업체들의 대용량 전지용 양극재 물질 선택이 분분한 가운데 BYD등 중국 업체들이 LFP³)를 후보 물질로 채택하였으며, 일본 업체들은 최근 Fe을 Mn으로 치환시킨 LMP⁴)에 기대를 하고 있음
 - ㅇ 보다 싸고, 높은 출력을 가지며, 오랜 사용에도 안정한 구조를 충족할

⁴⁾ LMP : 리튬-망간-인으로 구성된 전구체



³⁾ LFP : 리튬-철-인으로 이루어진 전구체,

수 있는 Li 양극제 개발에는 많은 시간이 소요될 전망

- 현재 많은 기대를 받고 LiFePO₄ 소재도 1997년에 개발된 물질이며, 향후 성능이 개선된 신소재 개발에는 많은 시간이 걸릴 것으로 전망됨

그림 4. 주요 리튬 이차전지 양극재 물질

출처: National Institute of Advanced industrial Science & Technology 자료

표 1. 양극재 종류와 특성

LCO LiCoO2 층상구조	NCM L[Ni,Co,Mn]O2 충상구조	NCA L[Ni,Co,Al]O2 층상구조	LMO LiMn2O4 스피넬구조	LFP LiFePO4	
200 000 00000			F		
충상구조	층상구조	층상구조	스피넥구조		
				층상구조	
		20 ₈₄			
145mAh/g	120mAh/g	160mAh/g	100mAh/g	150mAh/g	
3.7V	3.6V	3.6V	4.0V	3.2V	
높음	다소높음	낮음	높음	매우 높음	
높음	중간	높음	낮음	높음	
쉬움	다소 어려움	어려움	다소 어려움	어려움	
용도 소형		중형	중대형	중대형	
25~28 \$/kg	20 ~ 23 \$/kg	~ 21 \$/kg	8~9\$/kg	~ 20 \$/kg	
엘앤에프	엘앤에 <i>프</i> 에코프로	에코프로	휘닉스소재	한화케미칼	
Umicore Umicore Nichia Nichia		Nichia Toda	Nichia BYD	A123 BYD	
	3.7V 높음 높음 쉬움 소형 25~28 \$/kg 멜앤에프 Umicore	3.7V 3.6V 높음 다소높음 높음 중간 쉬움 다소 어려움 소형 소형, 중대형 25~28 \$/kg 20~23 \$/kg 엘앤에프 에코프로 Umicore Umicore Nichia Nichia	3.7V 3.6V 3.6V 3.6V 높음	3.7V 3.6V 3.6V 4.0V 높음 다소높음 낮음 높음 높음 중간 높음 낮음 서움 다소 어려움 어려움 다소 어려움 소형 소형, 중대형 중형 중대형 25~28 \$/kg 20~23 \$/kg ~21 \$/kg 8~9 \$/kg 엘앤에프 에코프로 휘닉스소재 Umicore Umicore Nichia Nichia Nichia Nichia Toda BYD	

나. 음극재

- □ 음극재는 충전할 때 리튬 이온을 받아들이는 역할을 하며, 주로 이용되는 물질은 흑연으로 안전성과 가역성(리튬 이온을 주고 받는 능력)이 뛰어남
 - 음극재는 천연 흑연, 인조흑연, 저결정성탄소, 금속 음극제가 있으며, 가장 많이 이용되는 것은 천연 흑연(NG-core)과 인조 흑연
 - 인조흑연은 코크스 가루와 결합체를 혼합 후 소성하여 완전 탄화된 것을 2500도 이상의 고열을 가해 결정구조를 만든 것으로 고가이지만 천연흑연 대비 구조의 안정성으로 수명이 2~3배 높은 것이 특징
 - 천연흑연은 가격이 저렴하나 충전 효율이 낮아 잘 사용되지 않았으나 중대형 이차전
 지의 가격적 문제로 최근 들어 천연흑연과 인조흑연을 혼합해서 사용하는 추세
 - 인조흑연 시장은 열처리 기술이 뛰어난 일본이 주도하고 있으며, 천연흑연 시장은 자원이 풍부한 중국이 주도
 - 삼성SDI는 천연 흑연(84%)을 주로 이용하고 있으며, LG화학은 천연 흑연과 함께 인조 흑연(41%)도 이용하고 있음
- □ 중대형 리튬 이차전지 상용화를 위해서는 셀의 용량을 늘려야 하고, 이를 위해서는 음극재 고용량화가 필요
 - 탄소질 물질은 안정성과 가역성(Li 이온을 주고 받는 능력)은 뛰어나나 용량 측면에서 한계가 존재
 - 음극 활물질에서는 Li 이온의 intercalation/deintercalation 반응이 다음과 같이 일어남

$$xLi + xe - 6C \leftrightarrow Li xC_6$$

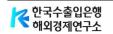
- Li 이온 하나가 6개의 카본 사이트를 차지하여 음극 용량의 손실이 발생하여, 리튬 이차전지의 용량을 제한시키는 주된 요인으로 작용
- 리튬 이차전지는 지금보다 최소 두 배 이상의 용량을 가져야 하며,
 이를 위해선 새로운 음극 활물질이 필요
 - 최근 Si 이용하여 용량을 4배 이상 증가 시킬 수 있는 물질이 개발 중에 있으나, 충/방전 cycle 후 음극 활물질의 부피가 증가하는 문제로 실제 전지 제작에는 적용되지 못하고 있음

- 전지 제조업체인 Maxell에서는 신에츠에서 개발한 10~20%SiOx/C를 흑연에 섞어 이용한 전지를 개발하였으며, 삼성전자(스마트폰 用)에 납품하였음
- 쿠레하社의 하드카본은 1세대 전기자동차용 음극재로 좋은 평가를 받고 있으며, 미국 EnerDel 및 LG화학의 전기차용 소재로 납품하였음
- □ 음극재 국산화율이 0.1%인 분야이나 최근 CS칼텍스, 포스코켐텍, 애경유화 등 국내기업들의 진출이 활발하여 국산화 가능성이 높아지고 있음
 - CS칼텍스는 2007년 개발한 소프트카본계 음극재를 생산하기 위해 경북 구미에 연간 2,000t규모의 공장을 가동 중이며, 전기차용 2차전지 수요 확대에 맞추어 최대 6,000t까지 확대할 계획
 - 포스코켐택은 2011년 5월 충남 연기군에 음극재 생산공장을 착공하였으며, 중국에서 수입한 천연 흑연광을 가공해 연간 2,500t 규모의 천연 흑연계 음극재를 생산할 계획
 - 애경유화는 자체 개발한 하드카본계 음극재를 SK이노베이션이 만든 전기차용 리튬 이차전지에 적용하여 성능 시험을 하는 등 상업화 연구 진행 중

그림 5. 리튬 이차전지 음극재 물질 종류 및 특성

구분	인조흑연	천연흑연	저결정탄소	금속
구조		503		20 µm
전지용량	208~360 mAh/g	360~370 mAh/g	160mAh/g	100mAh/g
표면적	1 m²/g	3~8 m³/g	2~5 m³/g	_
수명	높음	낮음	중간	매우 낮음
가격	> 15 \$/kg	10 \$/kg	12 \$/kg	>60 \$/kg
국내업체		포스코켐텍	GS칼텍스	_
해외업체	Hitachi Chemical JFE Chemical	Shanghai Shanshan BTR Energy	Nippon Carbon JFE Chemicla	3M Mitsui

출처: 하이투자증권


다. 분리막

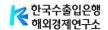
- □ 양극과 음극사이에서 리튬이온을 전달하는 역할을 하며, 과전류가 흐를때 기공을 막아 전지회로를 차단하는 안전장치 기능도 수행
 - 분리막은 다음과 같은 다양한 요구 조건을 만족해야 하기 때문 높은 기술수준과 신뢰성이 요구
 - 작동 온도에서 높은 이온 투과도 및 낮은 전기 저항, 양극과 음극에 대한 전기적인 절연체
 - 전해질 용액에 대한 화학적 안정성, 고용량화를 위해 고밀도 충진이 가능한 얇은 막 두께
 - 위의 조건들을 충족하는 재료로써 폴리에틸렌(PE: poly ethylene), 폴리프로필렌(PP: poly propylene)등의 폴리올레핀계 다공막들이 사용되고 있음
 - 폴리올레핀계 물질들은 높은 이온전도도 가지고 있으며, 단락등에 의한 비정상적인 전지 내부온도 상승시 다공성 기공들이 막혀 전류가 흐르지 못하게 하는 절연막으로 기능을 수행할 수 있어 가장 널리 사용
 - 하지만 기계적 강도가 취약하고, 열 변형이 심하여 리튬이차전지 폭발사고의 주요 요인 지목됨
 - 안전과 관련된 문제로 인해 높은 수준의 기술이 요구되어 타 소재대비 진입장벽이 높은 부야:

□ 분리막은 제조공정에 따라 습식과 건식으로 구분

- 습식막은 분리막의 성형과정에서 첨가한 가소제를 유기용매로 추출할 때 발생한 기공을 연신5)하여 확장한 것
 - 탄성, 두께 및 기공 균일도가 우수한 장점을 가지고 있음
- 건식막은 압축 필름을 저온에서 연신하여 결정계면에서 미세 균열을 발 생시키는 방식
 - PP/PE/PP의 삼층 구조를 가지며, 저가격 고출력용으로 주로 사용
- 나노섬유를 분리막으로 제작하는 기술이 개발되면서 배터리 용량 및 성능 안 정성 개선이 기대되나 기술 및 경제성 검증에는 상당한 시간이 소요될 전망

⁵⁾ 연신 : 필름을 잡아 늘리는 공정

keri.koreaexim.go.kr

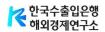

그림 6. 리튬 이차전지 분리막 종류 및 특성

구분	건식막	습식막	강화막			
구조			Ceramic 코팅 다공성 PP 필름			
수지	폴리프로필렌 폴 리에틸렌	폴리에틸렌	폴리프로필렌 폴리에틸렌			
두께	10~25 <i>μ</i> m	10~25 µm	15~25 <i>μ</i> m			
연신	Uni-Axial	Bi-Axial	_			
가격	1.0 \$/m²	1.3 \$/m²	1.5 \$/m²			
국내업체	씨에스텍	SK이노베이션	LG화학			
해외업체	Polypore Ube Industries	Asahi Kasei Toray Tonen	Evonik Degussa Asahi Kasei			

출처: 하이투자증권

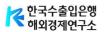
라. 전해질

- □ 양극과 음극에 리튬이온의 전달 매개체로 유기용매, 전해질염 및 첨가재로 구성됨
 - LiPF₆, LiBF₄, LiClO₄등의 리튬염을 프로필렌 카보네이트, 에틸렌 카보네이트등의 유기용매에 용해하여 전해액으로 사용
 - 리튬이온 전지의 경우 3.7V의 고전압에서 작동하므로, 물의 경우 쉽게 분해되어 버리기 때문 수용액은 전해액으로 사용이 불가능
 - 높은 전압에서 작동할 수 있는 유기 용매들이 주로 사용
 - 전해액은 전극재료에 따라 조성을 최적화해야 하며 용질의 종류와 농도 그리고 용매의 종류와 혼합비율에 따라 각기 다른 특성의 전해액을 얻을 수 있음
 - 전해액의 조성 및 농도 등은 전지 생산업체의 일급비밀이며, 최근에는 전해액의 과충전 방지를 위한 방지제를 넣는 업체도 있음
- □ 폴리머 가소제를 사용한 전해액은 전지의 안정성을 향상
 - ㅇ 유기용매는 발화성이 높고 액체 상태이므로 누설 문제가 존재


- 리튬이온 전지의 주요 사고 원인은 전해액의 누설 및 높은 반응성으로 인한 발화 사고임
- 유기 용매의 단점을 보안하고자 폴리머 가소재를 전해액으로 사용한 전지(리튬폴리머 전지) 등장
 - 폴리머 가소제는 젤 타입으로 전해액 누설 문제를 해결할 수 있으며, 분리막에 코팅하여 사용할 경우 전지의 부피를 줄일 수 있는 장점이 존재
 - 하지만 유기용매 대비 이온전도도가 떨어지는 단점이 있음
- 전기 자동차의 경우 높은 안전성을 요구하기 때문 유기 용매 대신 이온전도도를 높인 폴리머 전해액 확대 사용될 것으로 보임

종류	분자량(MW)	녹는점(℃)	분해온도(♡) -	이온전도도(mS/cm)			
	正시당(MVV)	ㅋ근급(0)	군에는고(0)-	in PC	in EC/DMC		
LiPF6	151.9	200	80	5.8	10.7		
LiBF4	93.9	293	100	3.4	4.9		
LiAsF6	195.9	340	100	5.7	11.1		
LiCIO4	106.4	236	100	5.6	8.4		
LiCF3SO3	155.9	300	100	1.7	=		

표 2. 리튬 이차전지 분리막 종류 및 특성


III. 세계 리튬 이차전지 시장동향

- □ 2014년 세계 리튬 이차전지 시장은 전년대비 15% 이상 증가한 23조원에 달할 전망
 - 2013년 세계 리튬 이차전지 시장규모는 20조원으로 추정되며, 2014년 시장 규모는 전년대비 15% 가량 성장할 전망
 - 2014년 핸드폰 및 노트북용 소형 IT기기용 리튬 이차전지 수요는 14.7조원으로 전체 수요의 64%를 차지
 - 하지만 2014년 이후 소형 IT용 이차전지 시장은 성숙단계 진입하여 성 장률은 크게 낮아지고 2020년 시장규모도 18.5조원에 불과할 전망
 - 리튬 이차전지 시장에서 소형 IT용 이차전지 비중은 2013년 70%, 2014년 64%, 2015년 56%로 낮아질 것으로 예상되며, 2020년에는 29%로 급감할 전망

- □ 세계 리튬 이차전지 시장은 전기차 및 에너지저장용 중대형 이차전지시장이 성장을 견인할 전망
 - 23조원 규모의 리튬 이차전지 시장 규모가 2020년 64조원으로 성장할 전 망이며, 수요 증가의 가장 큰 동인은 중대형 이차전지의 수요 증가때문
 - 전기차 한 대에 사용되는 이차전지 용량과 가격은 노트북 1,000배, 핸드 폰에 5,000배에 이르러 중대형 시장 성장의 영향력은 가히 폭발적임
 - 전기 자동차의 배터리 가격은 일반적으로 24kWh를 기준으로 약 15,000~20,000달러
- □ 친환경 자동차로 주목받고 있는 전기차의 리튬 이차전지 시장은 2014년 5.7조원에서 2020년 15.8조원으로 연평균 20%씩 성장할 전망
 - 전기 자동차는 보급 확대를 가로막고 있던 높은 가격, 짧은 주행거리, 충전 인프라 구축 문제 등이 해결되기 시작함에 따라 수요가 빠르게 증가 중
 - 전기차 수요 증가와 함께 전기차 가격의 약 40%를 차지하는 리튬 이차 전지 수요도 빠르게 증가할 전망
- □ 에너지저장용 리튬 이차전지 시장은 2013년 1.4조원에서 2015년 5.3조워 2020년 29.7조워 규모로 급성장할 전망
 - 전기차용 리튬 이차전지 수요보다 에너지저장용 수요가 더욱더 빠르게 성장할
 것으로 예상
 - 에너지저장용 리튬 이차전지 시장은 신재생에너지, 전력계통 안정화, UPS6)시장으로 구분
 - 신재생에너지 관련 부문 시장은 2013년 0.3조원, 2015년 1.6조원 2020년 10.1조원으로 견조한 성장이 예상
 - 전력 계통 안정화를 위한 대규모 에너지저장 부문은 2013년 0.4조원, 2015년 2.0조원 2020년 10.2조원으로 신재생 부문과 유사한 규모의 시장을 형성할 전망
 - 가정 및 산업용 UPS 시장은 2013년 0.7조원에서 2020년 9.4조원으로 빠르게 성장할 것으로 전망

⁶⁾ ups(uninterruptible power system) : 정전이 되었을 때 전원이 끊기지 않고 계속해서 전원이 공급되도록 하는 장치

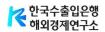
keri.koreaexim.go.kr

표 3. 세계 리튬 이차전지 시장 현황 및 전망

(단위: 조원, 백	백만셀)	10	11	12	13F	14F	15F	16F	17F	18F	19F	20F
1. ESS	Total	0.2	0.5	0.5 0.9	0.9 1.4	1.4 2.7	5.3	8.1	11.9	17.7	24.3	29.7
	신재생	0.0	0.1	0.2	0.3	0.8	1.6	2.6	3.8	5.7	7.9	10.1
	전력계통안정화	0.1	0.2	0.3	0.4	0.7	2.0	3.2	4.8	6.9	9.2	10.2
	UPS	0.1	0.2	0.4	0.7	1.1	1.6	2.3	3.2	5.1	7.2	9.4
2. 전기차	Total	1.5	2.7	4.4	4.9	5.7	6.7	7.7	9.0	10.6	12.8	15.8
	HEV	0.4	0.9	1.5	1.7	2.0	2.4	2.6	2.8	2.8	2.7	2.7
	PHEV	0.1	0.2	0.9	1.0	1.1	1.3	1.4	1.5	1.5	1.5	1.5
	EV	1.1	1.6	2.0	2.2	2.5	3.0	3.7	4.7	6.4	8.6	11.6
3. 소형IT	금액	11.5	12.1	13.2	14.1	14.7	15.5	16.1	16.7	17.3	17.9	18.5
	출하량	3,890	4,078	4,075	4,258	4,376	4,507	4,589	4,678	4,741	4,808	4,880
	폴리머	721	756	918	1,248	1,348	1,456	1,528	1,605	1,653	1,703	1,754
	각형	1,617	1,695	1,541	1,556	1,618	1,683	1,733	1,785	1,839	1,894	1,951
	원형	1,552	1,627	1,616	1,454	1,410	1,368	1,327	1,287	1,249	1,211	1,175
4. LIB Total	Total	13.3	15.3	18.5	20.3	23.1	27.5	32.0	37.7	45.6	55.0	64.0
	ESS	0.2	0.5	0.9	1.4	2.7	5.3	8.1	11.9	17.7	24.3	29.7
	전기차	1.5	2.7	4.4	4.9	5.7	6.7	7.7	9.0	10.6	12.8	15.8
출처: 메리	소형Ⅱ リス즞궈	1.5	12.1	13.2	14.1	14.7	15.5	16.1	16.7	17.3	17.9	18.5

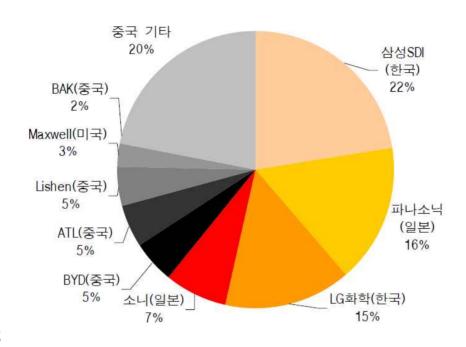
줄저: 메리즈승권

- □ 중대형 리튬 이차전지 시장 확대로 관련 소재시장 규모도 2020년까지 큰 폭으로 성장할 전망
 - 리튬 이차전지 소재 시장은 2013년 8.5조원 규모에서 2015년 10.2조원 2020년 25.1조원으로 빠르게 성장할 것으로 전망
 - 소재시장 중 가장 비중이 높은 양극제 시장규모는 2014년 3.1조에서 2020년 9조원으로 세배 가까운 높은 성장세를 기록할 전망
 - 분리막 시장은 2014년 1.2조에서 2020년 3.5조원으로 성장할 것으로 예 상되며, 음극재 시장은 2014년 1.1조원에서 2020년 3.3조원으로 증가


표 4. 세계 리튬 이차전지 소재시장 현황 및 전망

(단위: 조원)		10	11	12	13F	14F	15F	16F	17F	18F	19F	20F
1. 응용분야별	Total	6.1	7.0	7.8	8.5	8.6	10.2	11.9	14.1	17.3	21.2	25.1
	ESS	0.1	0.2	0.4	0.6	1.0	2.0	3.1	4.7	7.1	9.9	12.4
	전기차	0.6	1.0	1.7	2.0	2.1	2.5	3.0	3.5	4.3	5.2	6.6
	소형 IT	5.5	5.7	5.7	6.0	5.5	5.7	5.8	5.9	6.0	6.1	6.2
2. 소 <mark>재</mark> 별	Total	6.1	7.0	7.8	8.5	8.6	10.2	11.9	14.1	17.3	21.2	25.1
	양극	2.2	2.5	2.8	3.1	3.1	3.7	4.3	5.1	6.2	7.6	9.0
	음극	0.8	0.9	1.0	1.1	1.1	1.3	1.5	1.8	2.3	2.8	3.3
	분리막	0.9	1.0	1.1	1.2	1.2	1.4	1.7	2.0	2.4	3.0	3.5
	전해액	0.6	0.6	0.7	0.8	0.8	0.9	1.1	1.3	1.6	1.9	2.3
	Cu foil	0.7	0.8	0.9	1.0	1.0	1.2	1.4	1.7	2.1	2.5	3.0
	Al foil	0.2	0.3	0.3	0.3	0.3	0.4	0.5	0.6	0.7	0.8	1.0
	기타	0.7	0.8	0.9	1.0	1.0	1.2	1.4	1.7	2.1	2.5	3.0

자료: 메리츠증권


IV. 주요 기업 동향 및 국내 리튬 이차전지 산업동향

- □ 2013년 기준 삼성SDI가 시장점유율 28%로 1위를 차지하고 있으며, LG화학이 18%로 2위를 기록 중
 - 세계 리튬이온전지 시장에서 글로벌 Top 10 업체 중에서 미국의 Maxwell을 제외한 9개 업체가 한국, 일본, 중국 기업
 - 리튬 이차전지 시장은 1991년 소니가 세계 최초로 상용화한 이후 20년 이상 일본 업체들의 독주가 이어졌던 상황
 - 그러나 2000년 중반 이후 한국 업체들의 독자적인 기술 개발, 엔고/원저 상황 속에서의 가격경쟁력 확보, 주요 고객이자 계열사인 삼성전자, LG전 자의 성장 등을 통해 일본 업체들을 넘어서기 시작
 - 2013년 기준 한국의 시장점유율은 36%로 세계 1위이며, 업체별로는 삼 성SDI 28%, LG화학 18%로 업계 1,2위를 차지하고 있음
 - ㅇ 정부 지원을 바탕으로 중국 업체들의 무서운 추격이 시작됨
 - 중국 업체들의 시장점유율은 2012년 기준으로 이미 35%를 차지하고 있어 한국과 비슷한 수준
 - 중국 업체들은 가격경쟁력뿐만 아니라 기술경쟁력도 갖기 시작했는데 ATL등의 업체들은 애플의 소형제품에도 채용될 만큼 기술력을 인정받고 있음

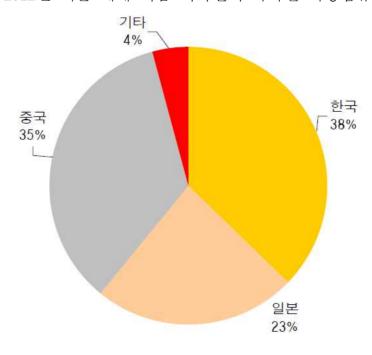
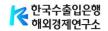
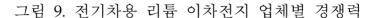

- 일본 업체는 완제품 경쟁에서 밀리고 있지만 뛰어난 기술력으로 소재분야에서 여전히 독점적 위치를 구축하고 있음
 - 원자재 및 소재 분야의 독점적인 위치를 구축한 일본 업체들은 한국 업체들에게 많은 영향력을 행사하고 있어 이 분야에 대한 기술 독립이 시급
 - 국내 업체들도 소재 분야에 많은 투자를 하고 있으나 아직까지는 일본 업체와 격차가 있는 상황

그림 7. 2012년 기준 세계 리튬 이차전지 업체별 시장점유율 현황



자료: SNE


그림 8. 2012년 기준 세계 리튬 이차전지 국가별 시장점유율 현황

자료: SNE

- □ 2014년부터 본격적인 성장이 예상되는 중대형전지 부문에서도 한국업체들이 두각을 나타내고 있음
 - LG화학은 GM, 포드, 현대기아차, 르노 등을 포함한 10여개 회사와 전 기차용 중대형전지 납품계약을 체결했고, 삼성SDI는 BMW, 폭스바겐등 과 계약을 체결하여 초기시장을 주도
 - 양적인 측면뿐 아니라 질적인 측면에서도 한국 완성전지업체들의 경쟁 력은 글로벌 최상위권으로 평가받고 있음

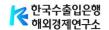



그림 10. 에너지저장용 리튬 이차전지 업체별 경쟁력

자료: Navigant research, 한화투자증권

- □ 완성 전지업체들의 경쟁력은 세계 최고 수준이나, 리튬 이차전지 소재업체들의 경쟁력은 미흡한 상황
 - 국내 전지 제조기술은 경쟁력을 확보하고 있으나, 소재 및 핵심기술은 선진국 대비 30~40% 수준
 - 전해액과 양극재를 제외하고는 소재의 국산화율은 20%에도 못 미치는 상황이며, 일본 업체와 경쟁을 위해선 소재 분야의 국산화가 절실한 상황
 - 주요 소재를 대부분 일본에서 수입하고 있는 상황이며, 리튬 이차전지 생산량이 늘어날수록 일본 업체에 대한 종속도는 커지고 있음
 - 리튬 이차전지 산업의 경쟁력 강화를 위해선 핵심소재의 국산화가 절실한 상황
 - 소재 분야의 기술 개발을 위해서 최근 들어 많은 업체가 참여하고 있으나, 기술 개발 인프라 및 투자는 여전히 선진국 대비 미약한 상황

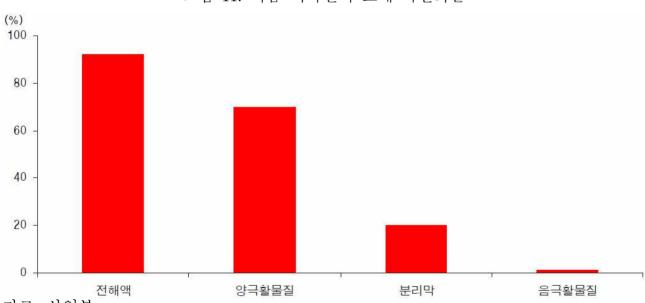


그림 11. 리튬 이차전지 소재 국산화율

자료: 산업부

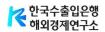
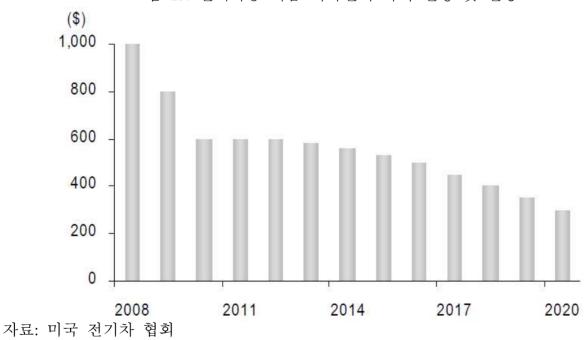

음극활물질 일렉포일 PCM/SM 국내 해외 해외 국내 삼성SDI Hitachi Chem Nippon Carbon 파워로직스 Taiyo Yuden 포스코켄텍 일진머티리얼 LG화학 Furukawa GS칼텍스 넥스콘테크 Mitsubishi Chem Nippon Denkai LS엠트론 블루웨이 Mitsui SK이노베이션 전해액 국내 해외 분리막 파낙스이텍 **Ube Industries** 솔브레인 Mitsubishi Chem 국내 LG화학 Central Glass 삼성정밀화학 Tomiyama SK이노베이션 Asahi Kasei LG화학 LiPF6 **Toray Tonen** 톱텍 Celgard 제일모직 국내 Stella Chemifa 후성 솔브레인 Kanto Denka Morita Chem 양극활물질 전구체 해외 국내 해외 첨가제/용매 엘앤에프 Nichia 국내 에코프로 **코**스무하하 Umicore 코스모신소재 대정화금 Toda 일본/호주/중국 **Ube Industries** LG화학 이앤에프테크 AGC 리켐 Mitsubishi Chem 삼성정밀화학 **Hunan Shanshan Tomiyama** 한화케미칼

그림 12. 리튬 이차전지 Supply Chain 동향

자료: KDB대우증권


IV. 시사적 및 결론

- □ 리튬 이차전지 시장은 전기차 및 에너지저장장치 등의 중대형 이차전지 시장 형성으로 2020년까지 높은 성장세를 기록할 전망
 - 리튬 이차전지 시장의 새로운 성장동력으로 중대형 리튬 이차전지에 대한 기대가 높은 상황이며, 2014년 이후 본격적인 개화기를 맞을 전망
 - 특히 신재생에너지 보급 확대와 전력계통 안정화를 위한 에너지저장용 리튬 이차전지 수요가 빠르게 커질 것으로 예상됨
- □ 중대형 이차전지 시장의 수요 확대를 위해선 가격절감 및 핵심부품의 성능개선이 필요함
 - 특히 중대형 리튬 이차전지 수요확대를 위해선 제조단가를 낮추는 문제 가 무엇보다 중요

- 미국 전기차 협회에 따르면 전기차 원가 중 리튬 이차전지가 차지하는 비중은 29~33%
- 내연기관차 대비 가격이 비싼 전기차의 수요를 끌어올리기 위해서는 원가 비중이 높은 리튬 이차전지의 가격 하락이 가장 중요
- '13년 자동차용 2차전지 가격은 kWh 당 \$600선에서 판대되고 있으며, '20년까지 중대형 2차전지 가격은 추가적으로 50% 하락한 \$300kWh로 하락할 전망
 - 불과 4~5년 전만해도 kWh 당 \$1,000였던 리튬 이차전지 가격은 40%나 하락하였으며, 가격 하락속도와 비례하여 수요도 늘어날 전망
- 중대형 리튬 이차전지 기업들은 시장에서 경쟁력을 확보하기 위해선 향 후 3~4년 내에 중대형 2차전지 가격을 50% 이상 낮춰야 할 것으로 예상
 - 이를 위해선 규모의 경제 확보와 보다 저렴한 신소재 개발이 필요

그림 13. 전기차용 리튬 이차전지 가격 현황 및 전망

- □ 리튬 이차전지 산업의 경쟁력 확보를 위해선 대기업과 중소기업간 새로운 협력 모델 구축이 필요
 - 리튬 이차전지 소재 개발에는 많은 비용과 시간이 투입되며, 자금력이
 약한 중소기업이 기술 개발부터 양산까지 비용을 감당하기에는 큰 애로
 점이 존재

- 기술개발 후 완제품을 만들어 중소기업이 대기업에 납품하는 현재 구조는 중소기업이 감당하기에는 위험요인이 너무 많아 우수한 제품 개발 확률이 낮아짐
- 국내 리튬 이차전지 산업의 경쟁력을 업그레이드 하기 위해선 소재분야의 경쟁력 확보가 필요하고, 이를 위해선 중소기업과 동반성장 모델이 필요
 - 소재분야의 경우 기술력 확보한 중소기업이 특화할 수 있는 분야이며, 일본의 경쟁력의 원천은 소재분야에 특화된 중소기업 때문
 - 제품 개발 단계에서부터 대기업과의 협력을 통해 제품 개발에 필요한 인력 및 비용지원을 통해 효과적인 협력 모델 구축이 필요