이슈보고서

산업경제팀

VOL.2021-이슈 (2021.11)

OLED 소재산업 동향 및 국산화 현황

CONTENTS	
< 유약 S	

I. OLED 원리와 구조

Ⅱ. OLED 소재시장 현황 및 전망

Ⅲ. 국내산업 현황

IV. 결론 및 시사점

작성

선임연구원 이미혜 (6252-3608)

< 요약 >

OLED 소재는 성장의 축이 스마트폰에서 TV·IT기기(태블릿 등)로 이동하면서 패널 면적이 증가하여 2020년 12.8억 달러에서 2025년 25.1억 달러로 연평균 14% 성장 전망

- 중소형 OLED용 소재시장은 OLED 소재시장('20)의 70%를 차지하며, 시장규모는 2020년 9.0억 달러에서 2025년 17.2억 달러로 연평균 14% 성장 전망
- 대형 OLED용 소재시장은 OLED 소재시장('20)의 30%를 차지하며, 프리미엄 TV 수요 증가 등으로 2020년 3.8억 달러에서 2025년 7.9억 달러로 연평균 16% 성장 전망

OLED 소재 주요 원천기술은 미국, 일본, 독일이 선점하고 과점 시장을 형성

- OLED 소재 시장('21)에서의 미국 Universal Display Corp.(UDC), 일본 이데미츠코산,
 독일 Novaled(삼성SDI 자회사), 독일 머크의 4개사의 시장점유율은 62%로 예상
- OLED 소재 개발은 신약 개발과 유사하여 신물질 개발, 특허 획득 후 사업화가 진행되며 디스플레이 기업과 긴밀한 협력이 필요하여 진입장벽이 높음

한국은 OLED 패널 소재의 해외 의존도가 높았으나 국내기업의 기술개발, M&A, 해외 기업의 국내 생산기지 건설 등으로 OLED 소재·부품의 국산화율은 57%로 상승

- OLED 소재개발은 디스플레이 기업과의 협력이 중요하여 해외기업의 국내 생산기반 투자 및 합작회사 설립, 국내기업의 성장 등으로 국산화율이 높아짐
- 소재 국산화율이 높아졌으나 핵심소재는 해외기업 의존도가 높음

한국은 OLED 패널 세계 1위로 소재기업 육성에 유리한 환경이므로 디스플레이패널-장비-소재기업이 유기적으로 협력할 수 있는 환경조성과 R&D 지원이 필요

- OLED 소재 시장은 시장규모가 작고 진입장벽이 높지만 성장잠재력이 풍부하여 국내 소재기업의 시장참여와 기술력 제고가 필요한 분야
- OLED 소재 중소기업은 소재개발, 양산 등에서 선도기업과 기술력, 자본력 격차가 발생하여 정책금융기관의 지원과 정책적 인력육성 등이 필요

I. OLED 원리와 구조

OLED(Organic Light Emitting Diode, 유기발광 다이오드)는 발광물질(유기화합물¹))에 전기를 가해 빛을 내는 전계발광(Electroluminescent, EL) 방식을 사용

- OLED는 발광물질로 이루어진 발광층(Emission Material Layer, EML)에서 전자(Electron)와 정공(Hole)이 만날 때 발생하는 에너지가 빛의 형태로 방출됨
- 양극(Anode)에서 정공, 음극(Cathode)에서 전자가 출발하여 빛의 삼원색인 Red, Green, Blue 물질이 사용되는 발광층에서 만나며, 발광층은 발광과 발색을 담당

자료: 삼성디스플레이.

¹⁾ 탄소와 결합한 화합물

OLED의 구조는 발광층과 전자·정공이 이동하는 공통층으로 분류

- 발광층은 호스트(Host)와 도펀트(Dopant)로 구성됨
- 호스트는 발광층의 주재료로 전자와 정공이 서로 잘 만나 결합할 수 있도록 지원
- 도펀트는 호스트의 전도율을 높여 발광효율, 색순도 개선을 담당하는 불순물로 호스트에 소량 혼합하여 사용
- Red, Green, Blue 각각 호스트와 도펀트가 필요
- 공통층은 크게 전자주입·수송층, 정공주입·수송층 4개로 분류되나 효율성 제고를 위해 새로운 층들이 추가되는 추세
- 전자주입층(Electron Injection Layer, EIL): 음극에서 발생하는 전자를 주입
- 전자수송층(Electron Transport Layer, ETL): 전자주입층으로 들어온 전자를 발광층으로 수송
- 정공방어층(Advanced Electron Transport Layer(aETL) 또는 Hole Blocking Layer(HBL)): 발광층과 전자수송층 사이에 위치하며, 양극에서 넘어온 정공이 전자수송층으로 넘어오지 않도록 제어
- 프라임(Prime): 음극에서 넘어온 전자가 발광층 밖으로 범람하지 않고 발광층에서 정공을 만나 빛을 내도록 제어하며 호스트와 도펀트를 보조하여 발광 효율을 높임
 - · Red, Green, Blue 각각 프라임이 있음
- 정공수송층(Hole Transport Layer, HTL): 정공주입층에 들어온 정공을 발광층으로 전송
- 정공주입층(Hole Injection Layer, HIL): 정공이 주입되는 층

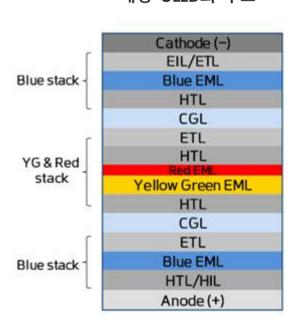
Cathode Cathode CPL EIL EIL/ETL & aETL BETL EML & prime layer Blue Host + Blue Dopant R Prime **G** Prime **B** Prime HTL HTL HIL

중소형 OLED의 단면 구조

주: 1) ITO는 Indium Tin Oxide(인듐 주석 산화물)으로 투명 전극으로 불림

2) CPL은 Capping Layer. 전면발광(Top emission) OLED에 사용되며 광추출 향상을 위해 굴절률이 조절된 Capping Layer 물질을 적용(대형 OLED는 배면발광(Bottom emission)) 자료: 옴디아.

중소형 OLED는 R·G·B가 수평으로 배열되는 구조, 대형 OLED는 R·G·B가 수직으로 적층되는 구조를 사용


- 중소형 OLED는 미세한 구멍이 뚫린 얇은 금속의 FMM(Fine Matal Mask)을 사용하여 유 기물을 증착하며 R·G·B가 수평으로 배열되는 구조
- 중소형 OLED는 각 색상의 소자들이 직접 발광하며 RGB OLED로도 불림
- 대형 OLED는 RGB를 수직으로 적층한 3 Stack Tandem²⁾ 구조로 중소형 OLED와 달리 전하생성층(Charge Generation Layer, CGL)이 있음
- FMM은 면적이 확대되면 가운데 부분이 무게 때문에 늘어져 대형 OLED 적용이 어려움
- 소자 수명이 짧아 OLED의 Burn-in(잔상)을 유발하는 Blue를 2개층으로 구성하여 장시간 사용 가능
- 전하생성층은 인접한 상하 소자에 전자·정공을 공급

중소형 OLED의 구조

주: 대형 OLED는 LG디스플레이의 OLED 기준 자료: 키움증권.

대형 OLED의 구조

²⁾ Single Stack은 중소형 OLED에 적용해온 1층의 Emission Unit 구조(EIL-ETL-RGB-HTL-HIL)를 뜻하며 3 Stack Tandem은 3개의 Emission Unit을 접합한 것을 의미. Tandem은 나란히 결합한 2쌍 혹은 그 이상의 장치.

П. OLED 소재시장 현황 및 전망

OLED 소재는 성장의 축이 스마트폰에서 TV·IT기기(태블릿 등)로 이동하면서 패널 면적이 증가함에 따라 2020년 12.8억 달러에서 2025년 25.1억 달러로 연평균 14% 성장 전망

- * 스마트폰 6인치, 태블릿 10인치대, OLED TV는 55인치 이상 대형 TV 중심으로 성장
- 중소형 OLED용 소재시장은 OLED 소재시장('20)의 70%를 차지하며, 시장규모는 2020년 9.0억 달러에서 2025년 17.2억 달러로 연평균 14% 성장 전망
- 스마트폰은 IT기기 트렌드를 선도하는 애플이 아이폰12부터 전모델에 OLED 패널을 탑재 하여 OLED 탑재 비중이 증가하고 있으며 폴더블폰 판매 호조 등으로 패널 면적도 증가
 - * 스마트폰 패널 출하량중 폴더블 패널 비중 전망: ('21f) 1.6% → ('25f) 8.4% (옴디아)
- IT기기용 패널 시장에서 OLED의 비중('20)은 0.7%로 미미했으나 삼성디스플레이의 IT 기기용 OLED 패널 사업 강화, 주요 세트업체의 프리미엄 라인 강화 등으로 성장 전망
 - * 애플은 '23년말~'24년에 태블릿에 OLED 패널 탑재 예상
- 대형 OLED용 소재시장은 OLED 소재시장('20)의 30%를 차지하며, 프리미엄 TV 수요 증가 등으로 2020년 3.8억 달러에서 2025년 7.9억 달러로 연평균 16% 성장 전망
- LG디스플레이에 이어 삼성디스플레이가 2021년 4분기에 대형 OLED 양산을 추진하면서 대형 OLED 소재시장 비중은 2019년 25%에서 2025년 32%로 증가 전망
 - * OLED TV의 TV 시장점유율('21)은 약 3%로 예상되나 면적이 커서 소재 사용량이 많음

자료: 옴디아(2021.6).

OLED 소재 시장('20)은 발광층 소재 35%, 공통층 소재 65%로 구성됨

- 발광층 소재는 공통층 소재 대비 사용량은 적지만 고가 소재 사용으로 가격이 높음
- 발광층은 호스트와 도펀트로 구성되며, 도펀트의 사용량 비중은 10% 미만³⁾으로 호스트 대비 사용량이 적지만 고가의 중금속을 사용하여 가격이 높음
 - · 발광층 소재는 형광에서 고효율이나 고가 중금속을 사용하는 인광, 고효율이나 고가 중금속을 미 사용하는 열활성화 지연형광(Thermally Activated Delayed Fluorescence, TADF)로 발전 전망
 - * Red와 Green 도펀트는 고가의 이리듐(Ir)을 사용하며, 이리듐 가격은 1온스에 2019~2020년에 1,480달러, 2021년 10월 29일 기준으로는 4,500달러로 상승 (Johnson Matthey)
- 공통층에서는 정공수송층의 소재 사용량이 가장 많음
- 정공수송층의 두께는 전자수송층 대비 약 2배 두꺼워 소재 사용량이 많아 공통층 재료 원가의 약 40%를 차지하는 것으로 추정
- 중소형·대형 OLED 구조 차이로 중소형 OLED 소재는 발광층과 공통층 비중이 41%와 59%이나 대형 OLED 소재는 발광층과 공통층 비중이 21%와 79%로 공통층 비중이 큼

OLED 소재 주요 원천기술은 미국, 일본, 독일이 선점하고 과점 시장을 형성

- OLED 소재 시장('21)에서의 미국 Universal Display Corp.(UDC), 일본 이데미츠코산, 독일
 Novaled(삼성SDI 자회사), 독일 머크의 4개사의 시장점유율은 62%로 예상(DSCC)
- 주요 소재 기술은 이데미츠코산, 머크 등의 화학회사가 보유하고 있으며, UDC는 프린스 턴대학 등과 협력, 노발레드는 대학 연구진의 창업을 통해 주요 사업자로 부상
 - · 이데미츠코산은 일본 4대 정유회사로 석유화학제품, 에너지 사업 등을 영위하며 석유 파동 이후 사업다각화를 위해 1980년대에 OLED 기술 개발을 시작하고 형광 소재를 생산
 - · 머크는 세계적 화학·제약회사로 화학부문은 디스플레이 소재(LCD 패널용 액정 등) 등을 생산, OLED 소재 분야에서 약 20년 동안 기술을 개발
 - · UDC는 프린스턴·서던 캘리포니아 대학과 함께 기존 소재 대비 발광효율이 4배 높은 신소재를 개발, 동 기업은 OLED 소재사업만을 영위하며 2021년 매출은 5,058억원
 - · 노발레드는 독일 드레스덴 대학에서 분사한 기업으로 2013년 제일모직이 인수4), 인수 당시 OLED 공통층 소재 핵심기술과 특허를 천개 보유하며 2021년 매출은 1,431억원
 - * 노발레드가 특허를 독점하고 있는 p형 도펀트는 공통층에 사용되는 첨가제로 소비전력을 줄 여주는 역할을 담당하며 중소형·대형 OLED 패널에 공급

³⁾ Blue 소재 사용량은 호스트 97%, 도펀트 3% 수준으로 추정

⁴⁾ 현재 지분율은 삼성SDI 50.1%, 삼성전자 40%, 삼성디스플레이 9.9%

- OLED 소재 개발은 신약 개발과 유사하여 신물질 개발, 특허 획득 후 사업화가 진행되며 디스플레이 기업과 긴밀한 협력이 필요하여 진입장벽이 높음
- 선도 기업은 자체 기술개발, M&A, 산학협력 등을 통해 특허 진입장벽을 구축
 - · UDC는 2018~2020년에 매출의 20%를 R&D에 투자했으며, Motolora Solutions, Fuji Film, BASF 의 특허를 인수, 머크는 일본 코니카 미놀타의 OLED 특허를 매입('20)하며 기술역량을 강화
 - · 선도기업은 기술력을 기반으로 높은 이익률을 향유
 - * UDC의 영업이익률은 2013년 이후 20~40%대 유지, 노발레드의 순이익률('20)은 36%
- 후발주자가 소재시장에 진출하려면 기존 특허를 회피하는 신소재 개발이 필요하며, 짧은 소재 수명 주기, 디스플레이기업과의 유기적 협력 등으로 신규 업체의 진입장벽이 높음
 - · 진입장벽이 높지만 고성능 소재 개발시 시장 판도가 빠르게 변화하는 구조
 - · 스마트폰의 언더디스플레이카메라(UDC)⁵⁾ 도입 등으로 세대별 소재구조 변화가 지속되면서 디스플레이 소재의 수명 주기는 2~3년 내외로 기업들의 지속적 R&D 투자가 필요
 - * 특정 재료 Set의 공급사로 선정되면 동 모델 단종시까지 소재 공급
 - · OLED는 재료의 조합이 중요하여 소재개발단계부터 디스플레이 기업과 긴밀한 협력이 필요하며 타사 기술(IP)을 사용하여 OEM만 담당시 수익성이 낮아짐

Red-Green 도펀트와 Blue 도펀트·호스트는 미국·일본 기업이 독점적 지위 구축

- Red·Green 도펀트는 UDC가 독점적 사업자로 UDC는 OLED 소재 관련 5,000건 이상의 특허를 보유
- UDC는 기술력 강화에 집중하고 소재 생산은 미국 PPG Industries에 위탁생산
- UDC의 특허 만료, 차세대 소재인 열활성 지연형광(TADF)으로의 전환 추진 등이 후발주 자에게 기회가 될 수 있으나 당분간 UDC의 지배력이 유지될 전망
 - · UDC는 2017년에 초기 인광 특허가 만료되었으나 추가 특허 출원을 통해 독점적 지위 유지
 - * 이리듐을 사용한 발광 특허 만료시 이리듐을 사용한 소재 분자구조 관련 세분화된 특허를 출원하여 기술 보호 기간을 연장이
 - · LG디스플레이는 UDC와 OLED 소재와 라이선스를 제공하는 계약을 2025년까지 연장, 삼성디스 플레이와 UDC 계약은 2022년 종료되나 계약을 2년 연장할 수 있는 옵션 보유

⁵⁾ 패널 아래에 카메라 모듈을 배치하여 평상시에는 일반 디스플레이 화면이 나오나 카메라를 실행하면 보이지 않던 카메라 촬영이 가능

⁶⁾ 키움증권

- Blue 소재는 일본기업이 특허를 보유하고 있으며 이데미츠코산에서 개발한 Pyrene계7 중심이었으나 일본 JNC의 Boron(붕소)계 개발로 경쟁구도 전환
- Boron계 Blue 도펀트는 기존 재료의 색순도와 수명을 개선하여 삼성디스플레이가 갤럭 시S10부터 Boron계 형광 도펀트를 사용하면서 이데미츠코산의 Pyrene계 수요 감소
- Blue 도펀트를 공급하는 기업이 Blue 호스트도 독점적으로 공급하는 구조
 - · 이데미츠코산은 안트라센(벤젠 고리 세 개가 차례로 접합된 화합물) 구조로 된 Blue 호스트와 Pyrene을 포함하는 Blue 도펀트를 조합하는 방식에 대한 특허를 독점하여 이데미츠코산의 Blue 도펀트 사용시 호스트도 동일 기업에서 독점 공급8)
- UDC는 Game Changer로 Blue 인광 소재를 개발중
 - · 이리듐(Ir)계 재료는 수명 개선 효과가 미미하나 백금(Pt)을 활용한 Blue 인광 재료가 수명 측면 에서 장점을 보유한 것으로 알려짐
- 공통층은 발광층 대비 진입장벽이 낮고 고객사 요구 조건에 맞는 신소재의 신속한 개발 이 중요하여 발광층 대비 다수 기업이 참여

OLED 소재별 주요 기업

분류		주요 기업			
호스트		듀폰, 덕산네오룩스			
Red	도펀트	UDC			
	프라임	덕산네오룩스, LG화학, Tosoh, 듀폰			
	호스트	신일본제철화학, 삼성SDI, LT소재			
Green	도펀트	UDC			
	프라임	덕산네오룩스, 머크			
Blue	호스트	이데미츠코산, SFC, 듀폰			
	도펀트	이데미츠코산, SFC, SK머티리얼즈JNC			
	프라임	이데미츠코산, SYRI, SFC, 덕산네오룩스, 피엔에이치테크			
정공수송층(HTL) 머크		머크, 이데미츠코산, 솔루스첨단소재, 덕산네오룩스, 호도가야			
전자주입층(EIL)		솔루스첨단소재, 듀폰			
전자수송층(ETL)		Tosoh, LG화학			
aETL		솔루스첨단소재			
p-도펀트		노발레드			
CGL		머크, Toray			

자료: 키움증권, 한국투자증권.

⁷⁾ 네 개의 벤젠 고리로 구성된 탄화수소화합물

⁸⁾ 아시아경제, '머티어리얼사이언스, 日 독점 '청색 도판트' 국산화 성공', 2018.9.8

Ⅲ. 국내산업 현황

한국은 OLED 패널 소재의 해외 의존도가 높았으나 국내기업의 기술개발, M&A, 해외기업의 국내 생산기지 건설 등으로 OLED 소재·부품의 국산화율은 57%로 상승

- 한국은 OLED 소재 R&D 역량은 일본 대비 낮았지만 OLED 패널을 최초로 양산하면서 다수의 OLED 발광재료 특허를 보유
- 한국은 2001년 '부품·소재 전문기업 등의 육성에 관한 특별법(부품·소재특별법)'을 제정했으며 부품·소재산업 발전전략('05), 소재산업 발전비전과 전략('07) 등을 발표
 - · 2019년에는 일본의 반도체·디스플레이 핵심소재 수출 규제 강화로 부품·소재 국산화에 대한 필요성에 대한 공감대가 높아지면서 '소재·부품·장비 경쟁력 강화대책'을 발표
 - · 2020년 소재·부품장비 2.0 전략 추진, 소재·부품·장비산업 경쟁력 강화를 위한 특별조치법 시행
- 특허청에 따르면 OLED 소재분야 특허출원은 2015년 533건에서 2019년 651건으로 연평 균 5% 증가했으며 상대적으로 특허 출원이 미미했던 발광 도펀트 관련 출원도 증가 추세
- OLED 소재개발은 디스플레이 기업과의 협력이 중요하여 해외기업의 국내 생산기반 투자
 및 합작회사 설립, 국내기업의 성장 등으로 국산화율이 높아짐
- 한국 디스플레이 기업은 OLED 패널을 최초로 양산하면서 원활한 공급망 구축 등을 위해 소재의 수직계열화, 해외기술기업 M&A, 소재기업과 협력 등을 강화
 - · 삼성디스플레이는 삼성SDI, LG디스플레이는 LG화학 중심의 공급체계를 구축했으며, 소재 기업에 지분투자를 병행
- 반도체·디스플레이 소재기업 SK머티리얼즈는 JNC와 합작회사 'SK머티리얼즈JNC'를 설립 ('20.12)⁹⁾하고 OLED 소재시장에 진출
 - · Blue 도펀트 사업을 시작으로 차세대 OLED 소재 개발 등을 통해 2025년까지 글로벌 Top-tier OLED 소재 회사로의 성장 추진

⁹⁾ 지분율은 SK머티리얼즈 51%, JNC 49%이며 JNC는 OLED 관련 R&D, 영업 관련 권리를 SK머티리얼즈JNC에 양도

발광층 소재중 Red·Green 도펀트와 Green 호스트 외에는 국산화율이 70% 이상으로 높아짐¹⁰⁾

- (Red 호스트) 세계 시장점유율('20)은 듀폰 48%, 덕산네오룩스 39%, LG화학 8% 순이며 국산화율은 100%
- 삼성디스플레이는 듀폰과 덕산네오룩스가 재료 구조에 따라 소재 공급*, LG디스플레이는 LG화학과 듀폰이 공급
 - * 삼성디스플레이는 3개 유기재료 Set를 보유, M 시리즈는 삼성전자 갤럭시 스마트폰용, LT 시리즈는 애플 아이폰용, E 시리즈는 중국 스마트폰 기업용으로 구성
- 듀폰은 국내에서 Red 호스트를 생산하여 Red Host 국산화율 100%로 평가
- (Green 호스트) 세계 시장시장점유율('20)은 신일본제철화학 37%, 삼성SDI 36%, 머크 22% 순이며 국산화비중은 20%
- 삼성디스플레이는 신일본제철화학과 삼성SDI가 재료 구조에 따라 소재 공급, LG디스플 레이는 LT소재(구 희성소재)와 LG화학 등이 공급
- 삼성디스플레이는 신일본제철화학 의존도가 높고, LG디스플레이의 대형 OLED에 사용되는 Yellow-green 소재는 머크가 공급*
 - * 머크 본사에서 소재 개발, 한국은 소재 평가 등 담당
- (Blue 호스트) 세계 시장점유율('20)은 이데미츠코산 65%, SFC 30%, 듀폰 5%이며 국 산화율은 70%
- LG디스플레이의 대형 OLED는 2개의 재료 Set를 보유, 국내 기존 라인은 WBC 재료 Set, 가장 최근 투자된 중국 광저우 생산라인은 WBE 재료 Set을 사용중으로 공급사가 상이
 - * WB는 LG디스플레이가 사용하는 기술인 WOLED(White OLED)¹¹⁾와 배면발광(Bottom Emission) 구조를 뜻하며 재료 특성에 따라 C와 E로 분류¹²⁾
 - · 파주 E3·E4 라인은 WBC를 사용하며 Blue 호스트 주 공급사는 이데미츠코산
 - · 중국 광저우 생산라인은 WBC보다 수명이 길고 색재현율이 높은 WBE Set를 사용하며 Blue 호 스트는 듀폰, LG화학이 공급
 - * LG화학은 이데미츠코산에 특허 라이선스료 지급하고 2020년 LG디스플레이 파주 공장에 WBC Set용 Blue 호스트 공급 시작, 2021년내 WBE용 Blue 호스트 납품 추진
 - * 국내기업 피엔에이치테크가 듀폰의 Blue 호스트를 OEM 방식으로 생산

¹⁰⁾ 한국디스플레이연구조합의 'OLED 디스플레이 소재·부품·장비 시장 및 국산화 동향 조사('20)'를 기반으로 작성

¹¹⁾ 중소형 OLED는 RGB 소자가 자체 발광하나 LG디스플레이의 대형 OLED는 소자들이 흰색 빛을 내게한 뒤 컬러필터를 사용.

¹²⁾ 디일렉, 'LG화학, 대형 OLED 청색 발광층 공급 확대 기대감', 2021.7.1

- SFC는 일본 호도가야화학이 최대 주주인 국내 기업*으로 삼성디스플레이가 SFC에서 Blue 호스트를 공급받아 국산화율이 높게 나타남
 - * 삼성그룹 벤처투자회사가 지분을 투자
- (Blue 도펀트) 세계 시장점유율('20)은 이데미츠코산 46%, SFC 33%, JNC 20% 순이 며 국산화율은 70%
- LG디스플레이의 주 공급사는 이데미츠코산이었으나 SK머티리얼즈JNC가 신규 진입
- 삼성디스플레이는 플래그십 스마트폰 패널의 주 공급사가 SFC이나 SK머티리얼즈JNC 제품 도입 검토

삼성디스플레이의 Blue 소자 공급업체

게 된 그 ㅈ	M8	LT2	M9	M10	M11	
재료구조	('17.상반기)	('17.하반기)	(2019)	(2020)	(2021)	
저요 시미트포	갤럭시S8/9,	OLOLEV-	갤럭시S10,	갤럭시S20,	갤럭시S21,	
적용 스마트폰	갤럭시노트8/9	아이폰Xs	갤럭시노트10	갤럭시노트20	갤럭시노트21	
Blue 도펀트	SFC, 이데미츠코산	SFC, 이데미츠코산	JNC	SFC	SFC	
Blue 호스트	SFC, 이데미츠코산	SFC, 이데미츠코산	SFC	SFC	SFC	
Blue 프라임	SYRI	SYRI	이데미츠코산	SYRI	이데미츠코산	

주: SYRI는 삼성 요코하마 R&D Institute로 일본에서 반도체·디스플레이 등의 부품·소재를 개발하는 삼성전자 산하 연구소 자료: 삼성증권, 뉴스.

공통층의 국산화 비중은 90% 수준이며 국내 기업이 해외 기업을 대체하고 있음

- 정공수송층(HTL)의 국산화 비중은 90%
- 삼성디스플레이는 솔루스첨단소재와 덕산네오룩스, LG디스플레이의 중소형 OLED는 이데 미츠코산과 머크, 대형 OLED은 머크와 솔루스첨단소재가 공급
 - · 솔루스첨단소재는 LG디스플레이와 정공수송층(HTL)을 공동 개발했으며, 2021년 5월 LG디스플레이의 대형 OLED용으로 승인받고 공급중
 - · 머크는 LG디스플레이의 대형 OLED에 이어 2021년 하반기부터 LG디스플레이 중소형 OLED 패널에도 정공수송층 소재를 공급하며 국내 공장에서 생산

- 전자수송층(ETL)의 국산화 비중은 90%
- 삼성디스플레이와 LG디스플레이의 중소형 OLED는 LG화학, LG디스플레이의 대형 OLED는 LG화학과 이데미츠코산이 공급
- 정공수송층과 전자수송층은 신규 소재로 변경시 OLED 소자 특성 변화를 동반하여 리스크 가 높음
- 전하생성층(CGL)은 호스트와 도펀트로 구성, 국산화 비중은 CGL 호스트는 5%, 도펀트는 50% 수준
- CGL은 전자 수송성을 갖는 n형과 정공 수송성을 갖는 p형의 2개 층으로 구성
- n형 CGL의 호스트는 일본 Toray가 주로 공급하며 LT소재가 소량 공급, p형 CGL의 호스트는 머크가 공급
- n형 도펀트는 SAES Group, p형 도펀트는 삼성SDI(노발레드)에서 공급하며 두 도펀트의 사용량이 유사하여 국산화 비중은 50%로 평가
- 정공주입층(HIL)의 국산화율은 90% 수준
- 중소형은 덕산네오룩스, LT소재, 삼성SDI, 대형은 이데미츠 코산, LT소재가 주 공급사

OLED 주요 소재 시장점유율 및 국산화율

분류 세계시장점유율('20)		국산화율	
		듀폰 48%, 덕산네오룩스 39%, LG화학 8%	100%
Red	도펀트	UDC 독과점	0%
Croon	호스트 신일본제철화학 37%, 삼성SDI 36%, 머크 22%, LT소재 4%		20%
Green 도펀트		UDC 독과점	0%
		이데미츠 코산 65%, SFC 30%, Dupont 5%	70%
Blue	도펀트	이데미츠 코산 46%, SFC 33%, JNC 20%	70%
정공수송층 머크 44%, 솔루스첨단소재 35%, 덕산네오룩스 12%		90%	
전자수송층 이데미츠코산·LG호		이데미츠코산·LG화학 각 38%, Tosoh 19%	90%
정공주입층 -		90%	

자료: 옴디아, 스톤파트너스.

주요 기업의 매출은 OLED 수요 증가 등으로 성장 지속

- 삼성SDI 전자재료 부문 매출은 2018년 2.2조원에서 2020년 2.7조원으로 연평균 8% 성장
- Green 호스트, HTL, HIL 재료 등을 삼성디스플레이, BOE, AUO 등에 공급하며, 노발레드를 인수하면서 OLED 공통층 소재와 도펀트 기술 확보
- 덕산네오룩스의 매출은 2018년 907억원에서 2020년 1,442억원으로 연평균 26% 성장
- 2021년 3분기 누적 매출은 1,446억원으로 전년 매출을 넘어섰으며, 3분기 영업이익률은 28%를 기록
- 솔루스첨단소재(구 두산솔루스)¹³⁾ 첨단소재 사업부 매출은 2019년 301억원에서 2020년 1,238억원으로 전년대비 43% 성장
- 정공방어층(aETL) 소재를 삼성디스플레이에 독점 공급해왔으며 삼성디스플레이의 대형 OLED(QD OLED)용 정공방어층 개발중
- CPL(Capping Layer)14)를 삼성디스플레이 중소형 OLED 패널용으로 공급
- 피엔에이치테크는 Blue 호스트(듀폰 OEM), CPL 등을 공급하며 매출은 2018년 59억원에 서 2020년 85억원으로 연평균 20% 성장
- 2021년 3분기 누적 매출은 157억원으로 전년 매출을 넘어섰으며, 3분기 영업이익률은 20%를 기록

주요 기업 매출

단위: 억원

기업	2018	2019	2020	연평균	비고
삼성SDI-전자재료 부문	22,041	23,781	25,660	<u>성장률</u> 8%	반도체·디스플레이 소재, 편광필름
LT소재	1,553	1,702	1,714	5%	
덕산네오룩스	907	979	1,442	26%	
솔루스첨단소재-첨단소재사업부	-	301	1,238	312%	2019년 설립
SFC	441	551	1,121	59%	
덕산테코피아-OLED 유기재료	410	307	456	5%	OLED 발광재료 중간체
피엔에이치테크	59	71	85	20%	

자료: 전자공시시스템.

^{13) 2020}년 사모펀드 운용사 스카이레이크가 인수 후 사명변경

¹⁴⁾ 광추출 향상을 위해 굴절률이 조절된 Capping Layer 물질을 적용

Ⅳ. 결론 및 시사점

한국은 차세대 디스플레이인 OLED 패널을 선도하는 국가이나 핵심소재 등은 해외 의존도가 높아 OLED 경쟁력 유지를 위해 소재산업 육성이 필요

- 디스플레이는 소재, 장비의 경쟁력이 패널 경쟁력을 결정하는 핵심요소로 한국의 OLED 경쟁력 유지를 위해 소재산업 육성이 필요
- 디스플레이는 9위 수출 품목으로 한국 수출('20)에서 비중은 3.5%이며, 국내 디스플레이산업 생산액('19)은 67.7조원으로 국내총생산(GDP)의 4.4%를 창출
- 한국은 TV, 스마트폰 시장을 선도하고 있어 OLED 소재 혁신은 디스플레이 경쟁력 제고 뿐만 아니라 IT기기 등 완제품 경쟁력 유지에 기여할 수 있음
 - · AR/VR 기기 등 전자제품과 자율주행 도입으로 성장할 차량용 디스플레이에 OLED 탑재
- 아직까지 TV·IT기기 패널 시장등의 주류 기술은 LCD로 OLED의 성장 가속화를 위해 OLED 소재 공급망 강화, 가격경쟁력 확보 등이 필요
- 중국이 진화된 LCD 기술인 미니LED 생산을 확대할 것으로 예상되어 OLED가 차세대 주류 패널로 부상하기 위해서는 가격경쟁력 확보가 중요한 시점
 - · 미니LED는 기존 LCD 패널의 광원으로 사용되는 LED칩보다 작은 LED칩을 대량으로 탑재 하여 기존 LCD 대비 얇은 두께, 개선된 명암비(화질)을 구현
 - · OLED-LCD TV 패널 가격차이는 코로나19로 인한 TV 수요 증가로 LCD 가격이 상승하면서 좁혀졌으나 '21년 3분기부터 백신 접종률 상승, 외부활동 증가로 LCD 가격이 하락세로 전 환되면서 격차가 확대될 전망
 - * OLED-LCD TV 패널 가격차이(55인치)는 '20년 1분기 4.8배에서 '21년 1분기 2.6배로 축소
 - * LCD TV 패널 가격은 2021년 3분기에 하락세로 전환, 4분기에 전분기 대비 약 30% 하락하고 2022년 상반기에도 두자릿수 하락 예상
 - * OLED TV 패널 가격은 2020~2025년에 연평균 5.5% 하락 예상(DSCC)
- OLED 핵심소재는 소수 해외기업 의존도가 높아 공급망 리스크 대비 및 소재 자립도 제고, 차별화된 패널 양산을 위해 탄탄한 공급망 확보 필요
 - · UDC는 Green과 Red 도펀트의 독점적 공급자로 소재 판매 뿐만 아니라 디스플레이 회사 의 OLED 매출액에 비례한 로열티를 지급받고 있음¹⁵⁾

¹⁵⁾ 삼성디스플레이는 2015~2016년에 매출의 0.5%를 UDC에 로열티로 지급한 것으로 추정, 2018년에 계약갱신한 내용은 공개되지 않음(KIPOST)

한국은 OLED 패널 세계 1위로 소재기업 육성에 유리한 환경이므로 디스플레이패널-장비-소재기업이 유기적으로 협력할 수 있는 환경조성과 R&D 지원이 필요

- OLED 패널 소재 시장은 시장규모가 작고 진입장벽이 높지만 성장잠재력이 풍부하여 국내 소재기업의 시장참여와 기술력 제고가 필요한 분야
- 주요 OLED 소재기업은 20% 이상의 영업이익률을 기록하고 있으나 한국 디스플레이 기업의 영업이익률('19~'20)은 중국의 디스플레이 굴기 등으로 인해 OLED 소재기업 보다 낮은 수준을 기록
- 일부 소재외에는 아직 시장규모가 작지만 기술력을 인정받고 OLED 소재 공급망에 진입하면 OLED 타 소재사업으로의 확장이 유리한 환경임
 - · 디스플레이 기업들이 국내에서 협업할 수 있는 기업을 찾고 있으며, 디스플레이 기업의 공 급망에 진입하면 OLED 재료 Set에 대한 이해도를 기반으로 타 소재로 사업다각화 가능
- OLED 소재 중소기업은 소재개발, 양산 등에서 선도기업과 기술력, 자본력 격차가 발생하여 정책금융기관의 지원과 소재 기술을 개발을 위한 인력육성 등이 필요
- 신제품 개발시 3~4년, 최소 150억원이 소요되며¹⁶⁾ 소재가 개발되더라도 경쟁력을 갖춘 소재를 출시하기까지 시간이 소요되어 R&D 지원 등이 필요
- 해외기업은 대학 등의 연구 성과를 기반으로 사업화를 추진하나 한국은 소재산업의 짧은 역사 등으로 인해 자체 기술 개발 뿐만 아니라 해외기업 M&A 등도 대안으로 모색 필요
- 차세대 디스플레이 사업은 2017년말 기준 인원부족률이 5.5%였으며 세부 분야별로 는 소재부품이 6.5%로 가장 높아¹⁷⁾ 인력 육성이 시급함
 - · 2019년 기준 인력 부족을 호소한 디스플레이 패널·모듈 회사는 17.4%였으나 소재·부품사는 40.2%, 공정·장비 기업은 42.3%(한국디스플레이산업협회)

¹⁶⁾ KIPOST

¹⁷⁾ 산업통상자원부, '미래 유망 신산업 (5개 분야), 2027년까지 16만 5천명 필요', 2019.7.2

참고문헌

Omdia, 'OLED materials market will continue solid growth in 2021', 2021.6

Compound Semiconductor, 'OLED Materials To Reach \$2.3B In 2024', 2021.2.9.
한국디스플레이연구조합, 'OLED 디스플레이 소재·부품·장비 시장 및 국산화 동향 조사', 2020.9

한국산업기술평가관리원, 'OLED 발광재료 기술개발 현황 및 전망' 키움증권, '한권으로 끝내는 OLED 소재 기초설명서', 2021.9.9 삼성증권, 'SK머티리얼즈, JNC와 손잡고 OLED 발광소재 진출', 2020.11.25. 매일경제, '위기의 K디스플레이 (下)-3년새 이익 반토막...韓 디스플레이 장비업체 위기', 2021.7.26.